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Abstract 

Air transportation system designers have 
had only limited success using traditional 
operations research and parametric modeling 
approaches in their analyses of innovations.  
They need a systemic methodology for 
modeling of safety-critical infrastructure that 
is comprehensive, objective, and sufficiently 
concrete, yet simple enough to be used with 
reasonable investment. The methodology must 
also be amenable to quantitative analysis so 
issues of system safety and stability can be 
rigorously addressed.  However, air 
transportation has proven itself an extensive, 
complex system whose behavior is difficult to 
describe, no less predict. 

There is a wide range of system analysis 
techniques available, but some are more 
appropriate for certain applications than 
others. Specifically in the area of complex 
system analysis, the literature suggests that 
both agent-based models and network analysis 
techniques may be useful. 

This paper discusses the theoretical basis 
for each approach in these applications, and 
explores their historic and potential further use 
for air transportation analysis.  

Need for Complex System Modeling  

Why Model?  Models are necessarily 
simplified abstractions of reality for 
understanding specific properties of a subject. 
Heylighten (1993) likens models to 
knowledge itself.  As abstractions of reality, 
he asserts they are vital simplifications and an 

“attempt to represent the environment in such 
a way as to maximally simplify problem-
solving.”  He continues that a model is not to 
be judged on its correctness in terms of its 
ability to yield absolute or complete truth, but 
rather on its ability to provide insight.   

Simply stated, models are our windows to 
understanding the world around us.  Wilson 
(1998) concurs with this sentiment, saying, “A 
Model is the explicit interpretation of one’s 
understanding of a situation, or merely of 
one’s ideas about that situation.  It can be 
expressed in mathematics, symbols, or words, 
but it is essentially a description of entities 
and the relationship between them.  It may be 
prescriptive or illustrative, but above all, it 
must be useful.”  Selecting an appropriate 
model is then highly dependent on the subject 
and the addressed concern.   

Wilson’s statement raises the issue that 
modeling itself does not impose a particular 
implementation, method or tool, but rather is 
the process of interpretation.   All models 
share the same interpretive goal, but many 
different types of models, and their associated 
tools and techniques, may be able to achieve 
it.  Selection should be based on the intended 
purpose of the model. 

Modeling Systems.  The real world is a 
big place that can be difficult to understand. 
To avoid being overwhelmed by its sheer size 
or complexity, we are inclined to parse it into 
manageable, and hopefully functional, parts 
through abstraction. This parsing can be at any 
granularity (pixilation, or scale), but tradeoffs 
are made between the size of the parts and the 
utility of the abstraction: too big, and it is still 
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unmanageable, too small and it may no longer 
represent the phenomena of interest.  A 
system is such a parsing.  The context in 
which it is formed must be kept with it.  

Kast and Rosenweig (1972) define a 
system as an organized assemblage of smaller 
units that form a unitary whole.   Others 
identify the interdependence and complexity 
that their relationships inherently contribute.   

Without models, we can’t do much with 
systems.  In fact, Forrester (1987) held the 
belief that all “systems” are mental constructs 
of portions of the real world, and that we can’t 
even imagine a system without modeling.  
Such a bold statement brings to mind a riddle 
about a tree falling in the woods, but there is 
no doubt that to understand or influence a 
system requires a model.  Whether a mental 
model, a mathematical model, or a simulation, 
Forrester had a point: system models are a 
basis for action.   We have expectations for 
our systems, and we would like to be able to 
influence their behavior. However, a system’s 
reaction to intervention is not always clear, 
nor easy to predict.  As systems become more 
complex, with a greater number of interrelated 
components, their response to intervention can 
become even more ambiguous.   In fact, as 
even linear systems become complex in the 
structure of their interrelationships, their 
behaviour can begin to appear chaotic. 

Modeling Complex systems. Modeling 
complex systems adds some additional 
limitations and assumptions to the already 
challenging task of systems modeling.  The 
scientific method and good engineering 
practice require us to observe, hypothesize, 
predict, test, derive a conclusion, and repeat 
until a satisfactory solution is obtained.     
How is the safety of a new air traffic control 
technique to be tested without putting aircraft 
and people at risk?  Even if safe, what effect 
will the new operation have on traffic flow 
management, or an airline business?  

In a complex world, answers to such 
questions are not always obvious, and can be 

counterintuitive.  In fact, there are numerous 
accounts of system changes that had 
unanticipated and sometimes dramatic results, 
like the deregulation of the power industry in 
California (which caused rolling power 
outages).  Often these ‘surprises’ are results of 
oversimplification, ignoring system dynamics 
or even misinterpreting the ‘system’ itself by 
not recognizing important elements, or 
including superfluous, confounding ones.  

One obvious issue with complex system 
modeling is compliance with the principle of 
Occam’s Razor.  How to select a model that is 
simple enough to field, yet captures the 
nuances of a complex system?   Heylighten’s 
statements imply that comprehensiveness is 
not necessary.  On the contrary, he implores 
us to look for the simplest model that explains 
observed behavior.  As a guiding principle, 
controlling scope, or the inclusion of detail, 
will require substantial domain knowledge and 
explicit recognition of the context.  A complex 
system cannot be trivialized with a simple 
treatment. 

Rather than assume that everything within 
a system can be equivalently described by a 
single type of abstraction, matching a model 
to reality begins with an honest assessment of 
the fidelity of what is 1) known and 2) what 
knowledge is desired.  This issue of scope for 
each model element is paramount to 
successful complex system modeling. One 
might assume modelers are granted authority 
to scope as they see fit, but unfortunately, that 
is not always the case. 

Another broad category of issues is 
expectations:  1) Qualities inherent to complex 
systems may make understanding analytical 
results open to interpretation.  2) Complex 
system analyses may disappoint those who are 
concerned with output rather than outcomes.  
3) Complex systems are often ill structured 
and changeable. Thus, modeling them can be 
difficult, costly, and never quite complete 
compared to more simple systems.   
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Finally, though important in all systems 
modeling, being able to gauge a system’s 
robustness becomes imperative with 
increasing system complexity.  Complex 
system models have limited optimizing 
ability.  The nature of complexity requires 
models to address fuzziness, non-determinism, 
and multiple objectives by affording 
exploration of sensitivities to assumptions and 
environmental uncertainties. 

Air Transportation System Analyses 

“The changes that are coming are too big, 
too fundamental for incremental adaptation… 
We need to modernize and transform our 
global transportation system, starting right 
now.” (U.S. Transportation Secretary Norm 
Minetta, 2004). Ultimately in the case of air 
transportation, national governments are 
largely responsible for both setting policy, and 
implementing infrastructure implied therein.  
To do so necessitates consideration of both the 
effectiveness and repercussions of actions 
within the air transportation system (ATS).  

As Wieland et al (2002) point out, 
modeling the ATS, “with all its interrelated 
components – mechanics, human decision 
making, and information flow, is a large effort 
involving multidisciplinary and ‘out-of-the-
box’ thinking.  …The challenge is not only to 
represent physical NAS [National Airspace 
System] dynamics, but also to incorporate the 
behavioral and relational components of NAS 
decision making that are an important part of 
the system. …A comprehensive model is 
incomplete and subject to first order errors 
unless all such interactions are incorporated to 
some degree.”   

Wieland et al stress the necessity for ATS 
modeling at three different time horizons for 
various purposes: tactical (predictive), 
strategic planning (investment and policy), 
and a posteriori analysis (also investment and 
policy).  Their claim is that a useful simulation 
of the ATS intended for setting policy must 
model the economic, informational and 

mechanical factors of the system and their 
interactions, or gross errors will occur.  They 
go on to recognize that this is a tall order 
indeed, and that a comprehensive ATS model 
is a “grand challenge,” albeit necessary and 
attainable. 

Actually, NASA has recognized the need 
for a more systemic study for some time.  
They commissioned Krozel (2000) to review 
all the research related to distributed air traffic 
management, a widely accepted development 
concept.  He identified not only existing 
research, but also research needs that were not 
being met.  In summary, he found that at the 
time, there were no tools capable of assessing 
both new and traditional ATS operations 
simultaneously, or their interactions. 

Carley (1997) claims “social, 
organizational and policy analysts have long 
recognized that groups, organizations, 
institutions, and the societies in which they are 
imbedded are complex systems.”  When it 
comes down to it, policy analysis is about 
complex system design in light of uncertainty.   

Certainly, complexity and uncertainly will 
abound in ATS transformation.  Influencing 
ATS performance within itself is complicated 
enough, but ATS policy reaches outside this 
arbitrary system boundary.  Sheate (1995) 
complains that standard ATS policy decisions 
have lead to a business market that decides 
“where capacity is needed and therefore fails 
both to maximize the use of existing airport 
resources and to recognize the importance of 
environmental capacity constraints.”  He 
argues for policy analyses that consider the 
interplay of system capacity, demand, and 
aircraft capability. 

Unfortunately, policy analysts in the ATS 
arena have continued to use methods more 
suited to regularly-behaved systems to 
develop strategy.  Apparently, this is a 
pervasive problem throughout the policy 
community.  Bankes laments that there are 
“few good examples of the classical policy 
analysis tools being successfully used for a 
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complete policy analysis of a problem where 
complexity and adaptation are central.”  He 
continues to say that policy analysis in the 
face of “deep uncertainty” must focus on 
robustness rather than single-point 
optimization.  This reinforces the notion of 
developing many different plausible 
environmental scenarios, and recommending 
policy that is viable across their range. 
Addressing this same concern, Iyer (2000) 
offered that the “basic contribution of 
complexity theory [to planning] is its focus on 
systemic interactions at various scales…” that 
can address uncertainty. 

Moss expresses the view that “Policy 
analysis has to start with observation and the 
specification of a problem to be solved.”  
From there, appropriate analysis tools can be 
defined.  Moss, Iyer, and others suggest that 
deterministic and even stochastic approaches 
to complex policy development are 
incompatible, though agent-based modeling 
(ABM)  may be workable. 

Though the ATS research community has 
attempted to model particular attributes of the 
system, there hasn’t yet been a method 
capable of answering questions regarding the 
systemic response to substantive changes in 
operations.  To date, agent-based, elemental 
simulations have proven too expensive and 
unwieldy to complete.  Parametric simulations 
have failed to provide the flexibility to be used 
as design tools. 

The dearth of appropriate analytical tools 
is not due to a lack of demand, or trying.  It 
has simply proven to be very difficult.  Calls 
for systemic simulation for operational design 
of the ATS continue to accrue, from the 
responsible government officials, to the 
researchers in the trenches.  

A (Discretized) Continuum of 
Potential Modeling Approaches 

Just as systems themselves differ in 
objectives and complexity, so do the models 

that describe them.  Regardless of the 
approach used, Andrews (2000) implores 
modelers to not loose touch with purpose of 
their effort, and to build models that 
“appropriately and credibly” simplify reality 
within specific context of the system at hand. 

Within the literature, there is consensus 
that: 1) Systems modeling is a useful a way of 
solving real world problems, particularly 
when prototyping or experimenting with the 
real system is expensive or impossible. 
2) Different types of applications call for 
different modeling techniques (figure 1).    

Figure 1. Methods and application within 
problem context (adapted from Daniel) 
Many different modeling approaches have 

been offered in the literature.  Generally 
speaking, these different approaches are 
intended to address specific classes of 
systems.  A model’s capabilities have to 
match the system’s overall attributes.  Many 
authors summarize these attributes in system 
classifications, which, of course, vary within 
the body of work.  Authors find their own 
dimensions on which to split the space of 
possible systems.  In the realm of complex 
systems, which nearly all classification 
schemes include, authors have deemed most 
modeling approaches unsatisfactory, leaving 
precious few potential choices for those 
interested in complex system modeling.    

Daniel (1990) described the possible space 
of systems in two dimensions, along the 
attributes of complexity and the number of 
objectives a system operates to control. He 
suggests that classic Operations Research 
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(OR) modeling techniques are best applied 
when the system can be described in great 
detail and a single optimization function is the 
primary focus of study.  He reports the static 
nature of OR models is an inherent limitation.  
Not only does OR require detailed system 
knowledge, the system is implicitly expected 
to remain unchanged.    

He offered cybernetics as an approach that 
acknowledges the importance of both system 
structure and the interaction of components 
that can cause dynamic behaviors.  However, 
he implies its limitations lie in the singularity 
of its optimization goals.  Others have 
enumerated additional challenges with 
cybernetic deployment.    

Daniel continues that of the many systems 
modeling techniques described in the 
literature, soft systems methods (SSM) are 
particularly well suited to complex systems: 
Complex systems are represented in the upper 
right of his systems space.  They are context-
rich, non-linear problems that cannot be 
expressed by a single set of objectives or 
goals.  SSM involve the development of a rich 
picture of the problem, putting great emphasis 
on framing the problem correctly within 
context.  However, these methods have been 
criticized for being unverifiable, non-
quantifiable, and lacking in rigor (Lane 1998).  

Additionally, if effecting systemic 
improvement is a modeler’s goal, the ability 
of the output/outcome to be influential has to 
be considered.  For a safety-critical system 
with minimum performance criteria, mental 
constructs (and the flexibility they provide as 
“controlling” qualities as in SSM) have not 
proven influential in many circles. Many 
systems, air transport included, demand 
rigorous evaluation before change is even 
considered. 

Sterman (2002) warns that SSM often 
leads to “wildly erroneous inferences about 
system behavior”, dramatic underestimation of 
the dynamics of systems, and incorrect 
conclusions.   In fact, Moss (2002) goes so far 

as to say that soft approaches as well as 
traditional, “harder” ones will never support 
effective policy analysis.  How then to address 
complex systems in both a rigorous but 
sufficiently realistic and tractable way?   Moss 
provides a suggestion, saying; “adaptive agent 
modeling [e.g. ABM] is an effective 
substitute” for other analyses in the complex 
system realm.   

Borshev and Filippov (2004) interpret the 
potential systems modeling space differently 
than Daniel.  Borshev and Filippov’s 
orthogonal dimension to complexity is 
discreteness, that is, the level of abstraction or 
aggregation in model elements.  Interestingly, 
they also make a distinction between system 
types that necessitate simulation vs. those 
better served by analytical models.  They 
prefer analytical solutions when a closed form 
solution is obtainable.  Thus, they imply one 
ought at least to consider such a model first, 
because simulation, they argue, is not trivial.  
However, they continue by saying that “for 
complex problems where time dynamics is 
important, simulation modeling is a better 
answer,” narrowing the field of potential 
modeling techniques. 

Akin to Andrews, Borshev and Filippov 
suggest matching modeling techniques to the 
“nature of the problem,” and that any one 
technique will almost surely not be most 
appropriate for all systems.   Rather they call 
for modeling techniques that “would allow for 
integration and efficient cooperation between 
different modeling paradigms.” They discount 
other complex system simulation options, but 
conclude that there is a place for both system 
dynamics (SD) and ABM.  They found ABM 
well suited to systems where most knowledge 
is at the local level (e.g. agent-level) and little 
or nothing is known about global 
interdependencies.  They also concluded that 
SD could be more efficient, particularly if 
agents are uniform and/or have little true 
“active” or autonomous behavior, and discuss 
the use of both techniques in combination.   
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While full-scale agent models can be as 
complex and costly to develop as a large-scale 
parametric model, there may be a means of 
validating models and educing a number of 
higher-order effects without constructing and 
running full-scale agent-based simulations.  
From the description above, it is clear that 
interaction among agents could be described 
by network structure: there are well-defined 
nodes (agents) and links (interfaces, 
interaction protocols).  Network analysis 
(NA), developed in the field of network 
theory, could be applied to a network defined 
by the agents’ communications demands.  
These may provide a relatively simple and 
reliable means of evaluating the aggregate 
performance of a complex system, similar to 
SD, with less effort than an ABM (Figure 2).   

( re)F ram ing
the problem

Execution and
Analysis of
Agent-Based
Simulation

Concept Models:
describing m odel
e lem ents or
“agents” and
interactions

Analysis of
Network

Described by
Agent definit ions

Recommend
System transform s
based on feasib le
modifications

Figure 2. ABM and NA Relationship 

By using dynamic or adaptive modelling 
methods when dealing with complex systems,  
the possible modeling space is reduced 
dramatically. The three methods identified in 
the literature as applicable for capturing 
dynamic behavior are worthy of further 
consideration: 

System Dynamics (SD). Forrester, the 
father of SD, describes system dynamics as 
the discipline of interpreting real life systems 
as simulation models.  These models highlight 
the structure and decision-making processes 
within a system that give rise to its behavior. 
As the name implies, SD is the study of the 
interactions of system elements via feedback 

and feedfoward loops causing attenuation and 
amplification of system attributes respectively.  
Often the metaphor of stocks and flows is 
used to illustrate the approach.  SD models are 
time-dependent linked mathematical models 
exploiting differential calculus.   

Borshev and Filippov note that SD is 
similar in nature to dynamic systems, or 
simply “dynamics,” taught in technical 
engineering disciplines, but uses language and 
notation more familiar to systems analysts.  
As with dynamics, rigorous treatment, 
unavailable with cybernetic models 
equivalents, is possible.  They comment that 
dynamics are taught to mechanical, aero and 
electrical engineers “as a standard part of the 
design process.” These members of the 
academic community acknowledge the 
necessity for systemic dynamic analysis for 
design, at least for physical systems. 

Unfortunately, SD requires extensive 
system knowledge a priori, including all 
system elements and potential 
communications between them.  This makes 
building a comprehensive model of a complex 
system an enormous effort.  Systems that 
change frequently or have a high degree of 
uncertainty may not be amenable to SD at all.   

Despite this major drawback, many 
authors have used SD to model complex 
systems. In its favor, analysis and control 
techniques for the resultant mathematical 
models are well established and have proven 
to be highly serviceable.  

Agent-Based Modeling (ABM). Agent-
based modeling (ABM) techniques have been 
proposed as an alternative to traditional 
parametric models because they can exhibit 
higher-order behaviors based on a relatively 
simple rule set.  ABM uses agents to execute 
model functions.  They are the active 
components of an agent-based simulation.    

Agents are ‘autonomous’ in that they have 
interfaces to the general simulation, but carry 
within them their own ability to perform their 
assigned tasks without a centralized controller.  
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While the latter two arguments are similar 
to those of Jennings, Bankes claims 
dissatisfaction with the restrictions imposed 
by alternative modeling formalisms is driving 
modelers to agent-based solutions. In his 
opinion, the most widely used alternatives, 
systems of differential equations and statistical 
modeling, are viewed as imposing restrictive 
or unrealistic assumptions that limit many 
applications.  He says “The list of assumptions 
that have been objected to is lengthy, but it 
includes linearity, homogeneity, normality, 
and stationarity.”  

Agents are interactive entities that capture 
salient but generally localized behavior of 
system elements.  Using simple rules to 
determine each agent’s actions, higher-order 
systemic behaviors can emerge.  Jennings 
(2000) offers further detail, saying agents: 

1) have defined boundaries & interfaces. 
2) are situated in a particular environment. 
3) strive for specific objectives. 
4) are both reactive and proactive, and 
5) are autonomous (distinct from objects).  

Jennings would most likely agree that 
ABM is not well suited to all systems.  
However, he outlines his argument in favor of 
ABM of complex systems, saying complex 
system development requirements and ABM 
are highly compatible.  He argues that ABM is 
particularly well suited to complex systems 
because it: 

1) partitions a complex problem space. 
2) naturally abstracts complex systems, and 
3) captures dependencies and interactions. 

However, he also admits that these same 
properties can lead to issues of 
unpredictability and apparent chaotic 
behavior.  Unpredictability is a problem in the 
simulation world because it makes internal 
validation very difficult when exact results 
cannot be repeated.  The lack of deterministic 
behavior is also a problem for validation.  
Jennings and others claim that these 
difficulties can be circumvented by formally 
analyzed interaction protocols, limiting the 
nature of agent interaction, and adopting rigid 
organizational structure among the agents. 

What Bankes fails to mention is that these 
shortcomings are not necessarily avoided just 
by deploying ABM approaches, and certainly 
not by agent implementations of standard 
methods.  A model still has to be appropriately 
defined to describe significant features for the 
system served.  Additionally, addressing 
issues such as homogeneity requires not only 
more effort in model specificity, but also more 
information related to distributions of 
variables or behaviors.  These data may not be 
available.  A homogeneous population model 
might be of sufficient fidelity for describing 
some systems, while an assumed (but 
erroneous) normal distribution, for example, 
might yield misleading results.  A more 
complex or detailed model (e.g. at the agent 
rather than the aggregate level) is not 
necessarily more accurate. 

Arthur (1994) suggests agents are a natural 
way to deal with ill-defined or complicated 
“reasoning” within a system, oft induced by 
inclusion of humans. He argues, “beyond a 
certain level of complexity, human logical 
capacity ceases to cope – human rationality is 
bounded.”  Agents can be designed to mimic 
the inductive behavior of people when placed 
in unfamiliar or complicated environments.  
However, the example he provides, a problem 
of deciding whether or not to frequent a bar 
based on the expected crowd, exemplifies a 
prime concern with assuming agent 
“intelligence” (which has to be present to 

Much hope is laid at the feet of ABM, 
particularly in the social science realm where 
complexity and uncertainty are paramount.  
From recent literature, Bankes (2002) 
summarizes three reasons why ABM is 
potentially important:  1) the unsuitability of 
competing modeling formalisms to address the 
problems of social science, (2) the ability to 
use agents as a natural ontology for many 
social problems, and (3) the ability to capture 
emergent behavior.   
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All networks can be analyzed by some 
basic, quantifiable measures including their 
degree distribution and their average 
clustering coefficient (Wuchty et al, 2003). 
Stemming from these basic metrics, networks 
often exhibit higher-order dynamic functions, 
thought to be associated with their unique 
structures.  These include robustness, fragility, 
percolation and searchability. 

differentiate the agent from a mere object in 
Jennings terms).   In his example, the agents 
select from a pre-determined set of schemata 
based on some outcome metric (actual number 
of bar patrons).  Can this be considered true 
inductive behavior?  The “induction” was 
accomplished [by the modeler] in the 
generation of the options, not by the agent in 
their selection later on.   

If appropriate strategies were not included 
in the agent’s definition, Arthur’s agents 
would have never succeeded.  Recognizing 
this, he does acknowledge that people’s 
inductive ability [emulated by agents using 
lists, genetic algorithms, etc.] is a “deep 
question in psychology” and thus can only be 
marginally imitated.  Generally speaking, 
agent “intelligence” at best will be limited by 
the degrees of freedom their internal models 
are allowed to explore, and may be further 
limited by the methods of exploration.   

Bonabeau (2002) claims that ABM is “by 
its very nature the canonical approach to 
modeling emergent phenomena” of complex 
systems, necessary for analysis of non-linear 
behaviors, localized phenomena, and 
heterogeneous populations. However, like 
Jennings, he acknowledges difficulties in 
building agent models of large systems 
because of the myriad low-level details and 
the “extremely computation intensive and 
therefore time consuming” model that results.   

The ability of NA to differentiate 
operationally unique airline route strategies 
and their resultant distinctive structures is yet 
to be shown.  Due to the relatively small 
number of nodes in air traffic networks, nodal 
separation distance and searchability tend to 
be straightforward to determine and not too 
instructive.  However, because of the 
criticality of the application, resilience to 
cascading failure, percolation, and congestion 
robustness are of utmost interest in the ATS.  
It is not clear if NA will be able to reveal these 
qualities sufficiently.  Braha and Bar-Yam 
(2004) suggest that the approach is worthy of 
pursuit, as functional classes of networks 
might be expected to have differences in their 
topologies, such as directedness.  These in 
turn could be expected to lead to particular 
dynamic potentials. 

 Latora and Marchiori (2001) call for the 
measurement of average path length, 
clustering coefficient, average degree, and 
degree distribution as do Strogatz, Watts, and 
others, but also suggest the use of efficiency 
and cost.  They define efficiency at both the 
local and global level as “the measure of how 
efficiently it [the network] exchanges 
information.”  They suggest that efficiency is 
really a more general measure for path length 
and clustering, useful because other measures 
can only be defined for certain network sub-
classes.  Efficiency can be applied to any 
network, but it can be difficult to calculate.   

Network Models.  Network theory is an 
extension of graph theory. By definition, 
nodes that constitute a network are 
interconnected in some way or another by 
links.  The resultant network can be 
categorized by its structure.  In turn, this 
structure imparts peculiar characteristics to 
both the system as a whole and to the 
individual nodes.  Following specific 
connectivity rules, some networks have some 
nodes that are highly connected while others 
have only a few connections. In other 
networks, links are randomly formed but still 
obey statistically generalizable patterns.    

Latora and Marchiori argue that the 
Watts/Strogatz measures are only effective in 
quantifying a network in the “topological 
abstraction, where the only information 
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retained is about the existence or absence of a 
link.”  Following the above arguments that 
quality/cost of the links are paramount to 
describing operational functionality, it appears 
unlikely then that topological metrics alone 
will be useful abstractions for describing air 
transport networks.  Using the Boston Subway 
as an example, they suggest that substituting 
efficiency measurements resolves difficulties 
in general application of network topologic 
analyses to weighted and directed systems. 

Once measured, Latora and Marchiori  
show that efficiency metrics can be used as 
indicators of potential cascading failure, and 
can be used as a “measure of performance” of 
the network.  They showed marked 
differences in the non-linear behavior (onset 
of cascading failure) of two different, well-
documented network topologies.    

Multimethod Approaches.  The use of 
more than one method in a single modeling 
effort may be the most promising approach to 
complex system analysis.  Multimethodology 
may enable modeling of inhomogeneous 
elements of a complex system, each element 
matched to an appropriate modeling method.  
This strategy may be important where a lack 
of complete system knowledge inhibits the use 
of a single model type.  It might also be useful 
when the scope of the system represented in a 
single scale would cause the model to become 
too cumbersome.  Multiple methods could be 
applied in successive phases of an effort, or in 
parallel, representing different levels of 
fidelity for various subsystem models. 

 Mingers (2000) proclaims, "Multimethod 
is not the name of a single method, or a 
specific way of combining methods.  Rather it 
refers in general to utilizing a plurality of 
methods or techniques, both quantitative and 
qualitative, within a real-world intervention."  
Declaring multimethodology as a distinct 
analytical approach or even as “new” may be 
a disservice to best practices within systems 
science.  Perhaps multimethodology is more a 
matter of emphasis than a totally new 

paradigm.  For example, a good modeler 
would be hard pressed to generate any “hard” 
model (e.g. ABM or SD) without some effort 
to capture significant system context or a clear 
understanding of the problem at hand.  Using 
SSM adds formalism to this step that in turn 
may improve the product. 

What Mingers and others offer is balance 
to the process.  Their claim, based on a 
number of examples, is that modelers will 
tend to focus on the data at hand, and not on 
modeling the primary driving functions of a 
system.  Models tend to be concentrated on 
directly measurable quantities, and ignore or 
de-emphasize less well-behaved system 
components (such as people).  Freeing the 
modeler to use all available and suitable 
techniques rather than a single model for the 
entire system should produce a better, more 
tractable product with less effort. 

Regardless of the declaration of multi-
methodology or not, the concept is well 
established in practice.  

Summary 

The majority of ATS researchers have 
joined Wieland et al. in suggesting that 
specific classes of tools represented by ABM 
and/or network analysis are perhaps the only 
modeling solutions currently available that 
offer systemic utility.  Holmes and Scott 
(2004) say, “Proposed ideas for changing the 
NAS should not be contemplated lightly, due 
to the sheer size and complexity of the system.  
Instead it will require a fundamental 
reconsideration of how such complex systems 
are analyzed and designed if the system to 
evolve remains productive and viable.  
Traditional methods for analyzing changes to 
complex systems fail when applied to highly 
dynamic and interconnected system such as 
the Internet or the NAS.”  They outline a case 
for using agents operating on networks as a 
viable analytical alternative. 

The literature suggests that both NA and 
ABM are well suited to study emergent, 
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complex behavior within the context of air 
transportation.   From the outset, differences 
in both scope of effort to establish these two 
models and expectations for their results 
should be acknowledged.  NA is focused at 
systemic-level solutions, much like system 
dynamics, while ABM revolves around the 
“unit” of the system.  Is the additional 
information (at the agent level) necessary or 
even useful for a transport system study?  Is 
the system so sensitive to assumptions of 
individual behaviors that ABM predictions are 
no better, or in fact worse, than more 
generalized network analyses?  On the other 
hand, are NA so aggregated that system 
dynamics are poorly described?  

Either approach, or perhaps both in 
combination as Mingers might suggest, may 
provide clues for uncovering problems, 
provide confidence about systemic 
performance, and contribute to developing 
mitigation strategies for systemic ATS issues.   
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